Arctic-alpine vegetation biomass is driven by fine scale abiotic heterogeneity
نویسندگان
چکیده
During recent decades large changes in vegetation biomass have been observed in arctic and alpine areas. While these temporal trends have been clearly linked to changing climatic conditions, the drivers of local spatial variation in biomass are still relatively poorly understood. Thus, we examine the effects of abiotic conditions (as measured by ten variables representing topography, soil properties and geomorphological processes) on variation in aboveground vascular plant biomass to understand the determinants of contemporary fine scale heterogeneity in this variable. We also compare the results from one destructive biomass estimation method (clipharvesting) to three non-destructive biomass estimates: vegetation cover, height and volume. To investigate the local drivers of biomass we analysed an extensive data set of 960 1 m 2 cells in arctic–alpine tundra using spatially-explicit generalized estimation equations to conduct variation partitioning. The abiotic environment had a clear impact on the fine scale distribution of biomass (variance explained 32.89 % with full model for sampled biomass). Soil properties (temperature, moisture, pH and calcium content) were most strongly related to aboveground biomass (independent effect in variation partitioning 7.03 % and combined effect including joined effects with topography and geomorphology 19.6 %). Topography had only a small influence after soil and geomorphology were taken into account (independent effect only 2.23 % and combined effect 18.73 %), implying that topography has only indirect effects on vegetation biomass. Of the three nondestructive biomass estimates, the results for vegetation volume were most similar to those for clipharvested biomass samples. Thus, we recommend utilizing vegetation volume as a cost-efficient and robust non-destructive biomass estimate in arctic-alpine areas. Our results indicate that the fine
منابع مشابه
Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation.
Soil conditions and microclimate are important determinants of the fine-scale distribution of plant species in the Arctic, creating locally heterogeneous vegetation. We hypothesize that root-associated fungal (RAF) communities respond to the same fine-scale environmental gradients as the aboveground vegetation, creating a coherent pattern between aboveground vegetation and RAF. We explored how ...
متن کاملThe role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps
The Alps provide a high habitat diversity for plant species, structured by broadand fine-scale abiotic site conditions. In man-made grasslands, vegetation composition is additionally affected by the type of landuse. We recorded vegetation composition in 216 parcels of grassland in 12 municipalities representing an area of 170 70 km in the south-eastern part of the Swiss Alps. Each parcel was ch...
متن کاملSpatial heterogeneity of tundra vegetation response to recent temperature changes
The spatial heterogeneity of recent decadal dynamics in vegetation greenness and biomass in response to changes in summer warmth index (SWI) was investigated along spatial gradients on the Arctic Slope of Alaska. Image spatial analysis was used to examine the spatial pattern of greenness dynamics from 1991 to 2000 as indicated by variations of the maximum normalized difference vegetation index ...
متن کاملThe Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients
We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern ...
متن کاملComplex variation in habitat selection strategies among individuals driven by extrinsic factors
Understanding behavioral strategies employed by animals to maximize fitness in the face of environmental heterogeneity, variability, and uncertainty is a central aim of animal ecology. Flexibility in behavior may be key to how animals respond to climate and environmental change. Using a mechanistic modeling framework for simultaneously quantifying the effects of habitat preference and intrinsic...
متن کامل